Protein kinase D is a key regulator of cardiomyocyte lipoprotein lipase secretion after diabetes.
نویسندگان
چکیده
The diabetic heart switches to exclusively using fatty acid (FA) for energy supply and does so by multiple mechanisms including hydrolysis of lipoproteins by lipoprotein lipase (LPL) positioned at the vascular lumen. We determined the mechanism that leads to an increase in LPL after diabetes. Diazoxide (DZ), an agent that decreases insulin secretion and causes hyperglycemia, induced a substantial increase in LPL activity at the vascular lumen. This increase in LPL paralleled a robust phosphorylation of Hsp25, decreasing its association with PKCdelta, allowing this protein kinase to phosphorylate and activate protein kinase D (PKD), an important kinase that regulates fission of vesicles from the golgi membrane. Rottlerin, a PKCdelta inhibitor, prevented PKD phosphorylation and the subsequent increase in LPL. Incubating control myocytes with high glucose and palmitic acid (Glu+PA) also increased the phosphorylation of Hsp25, PKCdelta, and PKD in a pattern similar to that seen with diabetes, in addition to augmenting LPL activity. In myocytes in which PKD was silenced or a mutant form of PKCdelta was expressed, high Glu+PA were incapable of increasing LPL. Moreover, silencing of cardiomyocyte Hsp25 allowed phorbol 12-myristate 13-acetate to elicit a significant phosphorylation of PKCdelta, an appreciable association between PKCdelta and PKD, and a vigorous activation of PKD. As these cells also demonstrated an additional increase in LPL, our data imply that after diabetes, PKD control of LPL requires dissociation of Hsp25 from PKCdelta, association between PKCdelta and PKD, and vesicle fission. Results from this study could help in restricting cardiac LPL translocation, leading to strategies that overcome contractile dysfunction after diabetes.
منابع مشابه
Hyperglycemia-induced secretion of endothelial heparanase stimulates a vascular endothelial growth factor autocrine network in cardiomyocytes that promotes recruitment of lipoprotein lipase.
OBJECTIVE During diabetes mellitus, coronary lipoprotein lipase increases to promote the predominant use of fatty acids. We have reported that high glucose stimulates active heparanase secretion from endothelial cells to cleave cardiomyocyte heparan sulfate and release bound lipoprotein lipase for transfer to the vascular lumen. In the current study, we examined whether heparanase also has a fu...
متن کاملGlucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization.
AIMS Heparanase, which specifically cleaves carbohydrate chains of heparan sulfate, has been implicated in the pathology of diabetes-associated complications. Using high glucose (HG) to replicate hyperglycaemia observed following diabetes, the present study was designed to determine the mechanism by which HG initiates endothelial heparanase secretion. METHOD AND RESULTS To examine the effect ...
متن کاملHomocysteine induces protein kinase C activation and stimulates c-Fos and lipoprotein lipase expression in macrophages.
Hyperhomocysteinemia is an independent risk factor for cardiovascular disease in human diabetes. Among the multiple factors that may account for the atherogenicity of homocysteine (Hcys) in patients with diabetes, macrophage (Mo) lipoprotein lipase (LPL) has unique features in that it is increased in human diabetes and acts as a proatherogenic factor in the arterial wall. In the present study, ...
متن کاملC-reactive protein enhances macrophage lipoprotein lipase expression.
High serum levels of C-reactive protein (CRP), a strong predictor of cardiovascular events, are documented in patients with type 2 diabetes. Accumulating evidence suggests that CRP could directly promote arterial damage. To determine the role of CRP in diabetic atherosclerosis, we examined the effect of CRP on the expression of macrophage lipoprotein lipase (LPL), a proatherogenic molecule upre...
متن کاملEndothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid.
Following diabetes, the heart increases its lipoprotein lipase (LPL) at the coronary lumen by transferring LPL from the cardiomyocyte to the endothelial lumen. We examined how hyperglycemia controls secretion of heparanase, the enzyme that cleaves myocyte heparan sulphate proteoglycan to initiate this movement. Diazoxide (DZ) was used to decrease serum insulin and generate hyperglycemia. A modi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2008